

Cornerstone Research Group, Inc.

Composite Mirror Technology

19 September 2006

Stephen Vining
Director of Govt. Programs
viningsd@crgrp.net
937-320-1877 x108

Jason Hermiller
Manager, Optics Group
hermillerjm@crgrp.net
937-320-1877 x129

www.CRGrp.net

Acknowledgement

This presentation summarizes results of Small Business Innovation Research (SBIR) Phase I contract F33615-02-M-5027 and effort to date for Phase II contract F33615-03-C-5013, "Composite Replica Mirrors for Lightweight Spaced-Based Optics," funded by the Air Force Research Laboratory (AFRL), Dr. Lawrence Matson, and managed by Dr. David Mollenhauer (AFRL/MLBC).

- Introduction
- Materials
- Processes for Replica Optics
- Mirror Structures
- Summary

- Introduction
- Materials
- Processes for Replica Optics
- Mirror Structures
- Summary

Applications: Space-Based Optics

- Operational Need:
 Improve on glass & metal mirrors
 - Lighter
 - Tougher
 - Cheaper

Images

L: www.fas.org/spp/starwars/program/sbl.htm

R: www.ball.com/aerospace/prod rs bus.html

Applications: Space-Based Optics

Operational Need:
 Improve on glass & metal mirrors

LighterToughernew materials

Cheaper new processes

Introduction: Material Design Elements

Space compatible:

- Radiation hard (to space ambient)
- AO resistant (inherent or through practical coating)
- Resistant to out-gassing in vacuum

Improvement over glass or metal mirrors:

- Lower areal density
- Higher tolerance to thermal excursion (low CTE)
- Improved strength (toughness & stiffness)
- Compatible with obtaining optical surface

Multi-Component Composites

Applications: Space-Based Optics

Operational Need:
 Improve on glass & metal mirrors

Lighter
 Tougher

Change
new materials

Cheaper — new processes

Introduction: Replication Technology

- Introduction
- Materials
- Processes for Replica Optics
- Mirror Structures
- Summary

SialyteTM Inorganic "Resin"

Attributes

- Inherently space compatible
- Lattice structure: high stiffness
- Operating temp: to ~900 °C
 bridges gap between organic resin and ceramics
- Low-temp process: fabrication savings

Applications

- Space-based structures
- Propulsion components

Materials:

Materials:

Candidate SialyteTM Composites

ZrO₂ Nanoparticle Composite

Carbon Nanofiber-Glass Syntactic Laminate

Candidate SialyteTM Composites

Materials:

Moderate process scale-up & composite optimization

Temperature (C)

→ A SialyteTM → Baseline → B SialyteTM → C SialyteTM

Materials: Cyanate Ester Organic Resin

- Demonstrated space-compatible chemistry
- Compatible with mature processes demonstrated with epoxy-based materials
 - Streamlines composite design
 - Streamlines process development
- Formulation experience:
 Confidence in near-term transition

Materials: Cyanate Ester Organic Resin

Negative CTE powders reduced CTE by more than 50%

Cyanate Ester Syntactic Foam

"Syntactic" = resin matrix + hollow microspheres

Attributes

Low mass density: 0.55 g/cc

Materials:

- High specific strength:126 MPa in compression
- Simple fabrication processes

Applications

- Lightweight structures
- Low dielectric structures
- High strength insulation

Cyanate Ester Syntactic Foam

New fabrication technique

- Eliminates voids & increases microsphere loading
- Improved material properties
 - Stronger
 - More uniform & more consistent

Materials:

Conventional Process

CRG Process

Materials: Cyanate Ester Syntactic Foam

Syntactic CTE Tailoring

→ CE Syntactic w/ A GC → CE Syntactic w/ B GC → Baseline Syntactic

Synlam[™] developed for mirror structure: syntactic laminate composite

- Cyanate ester glass syntactic sandwich cores
- Cyanate ester carbon fiber-reinforced face sheets

Cyanate Ester Synlam[™]

- Lightweight
- Competitive specific stiffness
- 200 °C max operating temperature

Materials: SynlamTM Composite

Thickness vs Tensile Modulus* & Specific Stiffness

- Introduction
- Materials
- Processes for Replica Optics
 - Mirror Structures
 - Summary

Processes for Replica Optics: Thermoset Replica Concept

Processes for Replica Optics: SialyteTM Replica Mirror Coupon

Fabrication

- SialyteTM cast on optical flat
- Gold coating

Finish

- Porous surface
- Roughness:
 - Best local: ~5 nm RMS (neat)
 - Best overall: ~8 nm RMS
 (ZrO₂ composite)

Sialyte[™] replicas deferred in favor of cyanate ester

Processes for Replica Optics:

Surface Roughness: 6.09 nm RMS

Processes for Replica Optics: Cyanate Ester Surface Replication

Roughness Before Casting: 5.41 nm RMS

CRG

Roughness After Casting: 4.61 nm RMS

Processes for Replica Optics: Cyanate Ester Syntactic Mirror

Objective

Demonstrate feasibility of direct casting on optical mold (optical flat for this trial)

Results

Figure

Slight curvature (due to cure shrinkage)

Finish

- Good mold replication
- Good reflective surface

Fabrication Process

- Good mold release
- Process development needed to improve figure replication

Processes for Replica Optics: Cyanate Ester Syntactic Mirror

Sta	tistics of Su	rface:	GK84-B		
Rp:	166.37nm	Rq:	5.15nm	Area:	1614.80×1229.80um
Rv:	-32.51nm	Ra:	3.29nm	Mag :	5.0
PV:	198.88nm	Rsk:	5.13	DATE:	09-05-2002
PT:	347168	Rku:	91.18	TIME:	15:18:39
Terms Subtracted: Tilt					

Surface Roughness: 5.15 nm RMS

Processes for Replica Optics: Mirrors on SynlamTM Substrates

Early Mirror (Print-through)

Mirror w/Syntactic Buffer Layer

Mold with Release Coating

Mirror w/CE Resin Buffer Layer

Mirror on CE MWNT Composite

Processes for Replica Optics: Mirrors on SynlamTM Substrates

Mitigating fiber print-through

- Original roughness (no buffer) >150 nm RMS
- Adding buffer layers reduces roughness
- Trade-off between figure and finish

77.7 nm

10.2 nm

Processes for Replica Optics: Mirrors on SynlamTM Substrates

Optical surface on early SynlamTM substrate: 6.7 waves

Optical surface on improved Synlam[™] substrate: 0.5 waves

Processes for Replica Optics: Mirrors on MMC Substrates

- Carbon syntactic replication layer on MMCC Inc MetGraf 2 metal matrix composite
- Figure: 2.23 waves RMS; finish: ~64 nm RMS

Processes for Replica Optics: Mirrors on MMC Substrates

- **Epoxy replication layer on MetGraf 2**
- Figure: 0.34 waves RMS; finish: 13.4 nm RMS

Processes for Replica Optics: Nanolaminated SynlamTM Mirror

- SynlamTM with nanolaminate from Lawrence Livermore National Laboratory (LLNL)
- Figure: 0.65 waves RMS; finish: 50 nm RMS

Processes for Replica Optics: Nanolaminated MMC Mirror

- MetGraf 2 with LLNL nanolaminate
- Figure: 0.8 waves RMS; finish: 4.59 nm RMS

- Introduction
- Materials
- Processes for Replica Optics
- Mirror Structures
- Summary

Process development: Complex SynlamTM Structures

Process development: Precision cutting & joining

Mirror Structures: Assembled SynlamTM

Design

FE Analysis

Fabrication

Synlam[™] Structure (8 cm across)

Areal Density 3.2 kg/m²

- First mirror structure assembly
- Glass face sheet, analog for nanolaminate

Areal Density without face sheet = ~4 kg/m²

Mirror Structures: Assembled SynlamTM

Face sheet before bonding

Face sheet after bonding

- Quilting effect
- Improvement required
 - Adhesive
 - Assembly technique

Mirror Structures: Nanolaminated SynlamTM Mirror

(incl non-reflective margin)

Figure 1.44λ RMS Finish 87.1 nm RMS

- Introduction
- Materials
- Processes for Replica Optics
- Mirror Structures
- Summary

- Sialyte[™] Inorganic Composites
 - 0 CTE space-compatible material
- Cyanate Ester Organic Composites
 - SynlamTM high-specific stiffness, lightweight material
 - High-performance syntactic foam

- Replication Processes
 - Thermoset cast on substrate
 - Nanolaminate on substrate

Composite Replica Mirrors for

Lightweight Space Optics

- Operational Benefits
 - Reduced mirror areal density
 - Tougher & stronger mirrors
 - Reduced fabrication time & cost
- Potential Air Force Applications
 - Space-based imaging systems
 - Space-based directed energy systems
- Potential Commercial Applications
 - Commercial imaging systems
 - Consumer telescopes

